para-Phenylenediamine Dimer as a Redox-Active Guest for Supramolecular Systems

Chemistry. 2024 May 2;30(25):e202400535. doi: 10.1002/chem.202400535. Epub 2024 Mar 21.

Abstract

Redox-active components are highly valuable in the construction of molecular devices. We combined two p-phenylenediamines (p-PDA) with a biphenyl (BiPhe) unit to prepare a supramolecular guest 4 consisting of three binding sites for cucurbit[7/8]uril (CBn) and/or cyclodextrins (CD). Supramolecular properties of 4 were investigated using NMR, UV-vis, mass spectrometry and isothermal titration calorimetry. Our analysis revealed that 4 forms higher-order host-guest complexes, wherein a CD unit occupies the central BiPhe site, secured by two CBn units at the terminal p-PDA sites. Additionally, 1 : 1 complexes with α-CD and β-CD, a 1 : 2 complex with γ-CD and 2 : 1 complexes with CB7 and CB8 were identified. Through UV-vis and cyclic voltammetry, redox processes leading to the formation of a stable, deep blue dication diradical of 4 are elucidated. Furthermore, it is demonstrated that CB7 selectively protects oxidised 4 from reduction in the presence of a reducing agent. The supramolecular and redox properties of the structural motif represented by 4 render it an interesting candidate for the construction of supramolecular devices.

Keywords: cucurbiturils; cyclodextrins; host–guest systems; redox-active dye.