Solvation/desolvation induced reversible distortion change and switching between spin crossover and single molecular magnet behaviour in a cobalt(II) complex

Dalton Trans. 2024 Mar 26;53(13):5861-5870. doi: 10.1039/d3dt03936f.

Abstract

Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.