A Miniaturized Wireless Micropump Enabled by Confined Acoustic Streaming

Research (Wash D C). 2024 Feb 26:7:0314. doi: 10.34133/research.0314. eCollection 2024.

Abstract

Miniaturization of health care, biomedical, and chemical systems is highly desirable for developing point-of-care testing (POCT) technologies. In system miniaturization, micropumps represent one of the major bottlenecks due to their undesirable pumping performance at such small sizes. Here, we developed a microelectromechanical system fabricated acoustic micropump based on an ultrahigh-frequency bulk acoustic wave resonator. The concept of an inner-boundary-confined acoustic jet was introduced to facilitate unidirectional flow. Benefitting from the high resonant frequency and confined acoustic streaming, the micropump reaches 32.620 kPa/cm3 (pressure/size) and 11.800 ml/min∙cm3 (flow rate/size), showing a 2-order-of-magnitude improvement in the energy transduction efficiency compared with the existing acoustic micropumps. As a proof of concept, the micropump was constructed as a wearable and wirelessly powered integrated drug delivery system with a size of only 9×9×9 mm3 and a weight of 1.16 g. It was demonstrated for ocular disease treatment through animal experimentation and a human pilot test. With superior pumping performance, miniaturized pump size, ultralow power consumption, and complementary metal-oxide-semiconductor compatibility, we expect it to be readily applied to various POCT applications including clinical diagnosis, prognosis, and drug delivery systems.