Global epistasis in plasmid-mediated antimicrobial resistance

Mol Syst Biol. 2024 Apr;20(4):311-320. doi: 10.1038/s44320-024-00012-1. Epub 2024 Feb 26.

Abstract

Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.

Keywords: Antimicrobial Resistance; Evolution; Global Epistasis; Microbiology; Plasmids.

Publication types

  • Review

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Bacteria / genetics
  • Drug Resistance, Bacterial* / genetics
  • Epistasis, Genetic
  • Genome, Bacterial
  • Plasmids / genetics

Substances

  • Anti-Bacterial Agents