Elucidating the EXOSC3-IRE1α interaction: a convergent study incorporating computational, in vitro and in vivo studies

J Biomol Struct Dyn. 2024 Feb 26:1-11. doi: 10.1080/07391102.2024.2320252. Online ahead of print.

Abstract

The Unfolded protein response (UPR) is an adaptive signalling pathway which is triggered by accumulation of unfolded/misfolded protein in ER lumen. The UPR consist of three transmembrane proteins-IRE1α, PERK and ATF6 that sense ER stress which leads to activation and downstream signaling from ER lumen to cytosol to restore homeostasis. IRE1α is an evolutionary conserved arm of UPR and acts as an interaction platform for many potential proteins that become activated under ER stress conditions. We investigated potential partners of IRE1 α through MS studies and found EXOSC3 as one of the binding partner of IRE1α. Exosomal complex proteins have 3'5' exonuclease properties (EXOSC3) that play an important role in mRNA surveillance. This property of exosomal proteins coincides with IRE1α ribonuclease activities and its mechanism of action is similar to that of IRE1α-RIDD pathway which degrades any unstable mRNA that disrupts cellular homeostasis. At the same time, studies have shown that knockdown of EXOSC3 causes ER stress in human cells, so we speculated that there might be a functional crosstalk between IRE1α and EXOSC3 under ER stress conditions. Therefore, we employed computational tools to predict and explore the stability and dynamics of the IRE1α-EXOSC3 complex. The analysis indicates that IRE1α and EXOSC3 exhibit potential interaction with the involvement of ScanNet, predicting binding pockets between the two proteins. Further, the interaction was validated via co-immunoprecipitation and yeast two-hybrid assays, thus suggesting EXOSC3 as a component of the UPRosome complex. Hence, this functional crosstalk might influence the dynamic functional output of IRE1α.Communicated by Ramaswamy H. Sarma.

Keywords: Endoplasmic reticulum (ER) stress; Exosomal complex protein 3; IRE1α; Protein Data Bank; Unfolded protein response.