Bacterial defense systems exhibit synergistic anti-phage activity

Cell Host Microbe. 2024 Apr 10;32(4):557-572.e6. doi: 10.1016/j.chom.2024.01.015. Epub 2024 Feb 22.

Abstract

Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.

Keywords: Druantia; Gabija; Kiwa; Septu; Zorya; co-occurrence; ietAS; phylogroups; prokaryotic immunity; tmn.

MeSH terms

  • Bacteria
  • Bacteriophages* / genetics
  • Escherichia coli / genetics
  • Genome, Bacterial