Optimized reamer geometry for controlled reaming of the proximal femur

Sci Rep. 2024 Feb 24;14(1):4546. doi: 10.1038/s41598-024-55067-9.

Abstract

Preparation of the femoral proximal medullary cavity by reaming is essential for intramedullary nail osteosynthesis and hip revision arthroplasty. The use of reamers sometimes exerts high torsional forces on the bone. Design and direction of rotation of the reamer are potential influencing factors. The aim of this biomechanical study is to evaluate the best combination of a right- or left-cutting reamer with a clockwise- or counterclockwise-rotating insert in terms of preparation and safety. Right- and left-cutting reamers with conical design were each introduced into five synthetic femurs in both clockwise and counterclockwise rotation with constant feed force. A specially constructed test system was used for this series of tests, with which the respective intramedullary channel were reamed step by step. This was then used to determine the required torque. In addition, the feed rate measurement was analyzed using a modified digital caliper. The feed rates of the reamers with rotation in the same direction as the cutting direction were significantly increased compared to rotation in the opposite cutting direction (CCRLC vs. CCRRC 76.8 ± 9.0 mm/s vs. 25.2 ± 8.3 mm/s and CRRC vs. CRLC 54.3 ± 12.3 mm/s vs. 19.3 ± 0.6 mm/s; p < 0.01). In contrast, the mean torque during the reaming process was identical in all four groups. When preparing the proximal femoral medullary cavity, especially in cases with fragile bone structure, the available reamers should be introduced in opposite rotation to the cutting direction to achieve a more controllable feed of the reamer. Left-cutting reamers represent an alternative, using them in the usual clockwise-rotating technique to reduce the risk of complications during reaming.

Keywords: Femur; Intramedullary nail; Press fit; Prosthesis; Reaming; Stem.

MeSH terms

  • Arthroplasty, Replacement, Hip*
  • Bone and Bones / surgery
  • Femur* / surgery
  • Lower Extremity / surgery
  • Mechanical Phenomena