Effect of Different Post-Curing Methods on the Degree of Conversion of 3D-Printed Resin for Models in Dentistry

Polymers (Basel). 2024 Feb 18;16(4):549. doi: 10.3390/polym16040549.

Abstract

The aim was to investigate the effects of different post-curing units on the chemical properties (degree of conversion) of 3D-printed resins for producing models in dentistry. The goal is to determine whether less-expensive post-curing units can be a viable alternative to the manufacturer's recommended units. Forty-five samples were fabricated with an LCD printer (Phrozen Sonic Mini, Phrozen 3D, Hsinchu City, Taiwan) using MSLA Dental Modeling Resin (Apply Lab Work, Torrance, CA, USA). These samples were divided randomly into four different groups for post-curing using four distinct curing units: Phrozen Cure V2 (Phrozen 3D, Hsinchu City, Taiwan), a commercial acrylic nail UV LED curing unit (SUNUV, Shenzhen, China), a homemade curing unit created from a readily available UV LED light produced (Shenzhen, China), and the Triad® 2000™ tungsten halogen light source (Dentsply Sirona, York, PA, USA). The degree of conversion was measured with FTIR spectroscopy using a Nicolet 6700 FTIR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Phrozen Cure V2 had the highest overall mean degree of conversion (69.6% with a 45 min curing time). The Triad® 2000 VLC Curing Unit had the lowest mean degree of conversion value at the 15 min interval (66.2%) and the lowest mean degree of conversion at the 45 min interval with the homemade curing unit (68.2%). The type of light-curing unit did not yield statistically significant differences in the degree of conversion values. There was a statistically significant difference in the degree of conversion values between the 15 min and 45 min curing intervals. When comparing individual light-curing units, there was a statistically significant difference in the degree of conversion for the post-curing units between the 15 min and 45 min curing time (p = 0.029).

Keywords: additive manufacturing; degree of conversion; post-curing 3D printing.

Grants and funding

This research was funded by the College of Dentistry Research Fund.