Candida albicans Infection Disrupts the Metabolism of Vaginal Epithelial Cells and Inhibits Cellular Glycolysis

Microorganisms. 2024 Jan 30;12(2):292. doi: 10.3390/microorganisms12020292.

Abstract

Vulvovaginal candidiasis (VVC) is a common gynecologic disorder caused by fungal infections of the vaginal mucosa, with the most common pathogen being Candida albicans (C. albicans). Exploring metabolite changes in the disease process facilitates further discovery of targets for disease treatment. However, studies on the metabolic changes caused by C. albicans are still lacking. In this study, we used C. albicans-infected vaginal epithelial cells to construct an in vitro model of VVC, analyzed the metabolites by UHPLC-Q-Exactive MS, and screened the potential metabolites based on metabolomics. The results showed that C. albicans infection resulted in significant up-regulation of D-arabitol, palmitic acid, adenosine, etc.; significant down-regulation of lactic acid, nicotinamide (NAM), nicotinate (NA), etc.; and disruption of amino acid metabolism, and that these significantly altered metabolites might be potential therapeutic targets of VVC. Further experiments showed that C. albicans infection led to a decrease in glycolytic enzymes in damaged cells, inhibiting glycolysis and leading to significant alterations in glycolytic metabolites. The present study explored the potential metabolites of VVC induced by C. albicans infection based on metabolomics and verified the inhibitory effect of C. albicans on vaginal epithelial cell glycolysis, which is valuable for the diagnosis and treatment of VVC.

Keywords: Candida albicans; glycolysis; metabolomics; vaginal epithelial cells; vulvovaginal candidiasis.