Chirality and Rigidity in Triazole-Modified Peptidomimetics Interacting with Neuropilin-1

Pharmaceuticals (Basel). 2024 Jan 31;17(2):190. doi: 10.3390/ph17020190.

Abstract

The interaction of Neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has been shown to promote angiogenesis under physiological and pathological conditions. Angiogenesis around tumors is a major factor allowing for their growth and spread. Disrupting NRP-1/VEGF complex formation is thus a promising pathway for the development of new anticancer pharmaceuticals. A large body of work has been produced in the last two decades detailing the development of inhibitors of NRP-1/VEGF complex formation. Among those were peptide A7R and its smaller derivatives KXXR and K(Har)XXR. It has been previously reported that replacement of the XX backbone with triazole residues has a positive effect on the proteolytic stability of inhibitors. It has also been reported that a higher dihedral angle range restriction of the XX backbone has a positive effect on the activity of inhibitors. In this work, we have designed new triazole derivatives of K(Har)XXR inhibitors with substitution allowing for higher range restriction of the XX backbone. The obtained peptidomimetics have greater activity than their less restricted counterparts. One of the newly obtained structures has greater affinity than the reference peptide A7R.

Keywords: VEGF-165; neuropilin-1; peptidomimetics; structure–activity relationship; triazole.