Three Biopolymers and Origin of Life Scenarios

Life (Basel). 2024 Feb 18;14(2):277. doi: 10.3390/life14020277.

Abstract

To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.

Keywords: RNA world; aminoacylation; genetic code; origin of life; proto-ribosome; ribosome evolution; tRNA; translation.

Publication types

  • Review

Grants and funding

This research received no external funding.