Human GST P1-1 Redesigned for Enhanced Catalytic Activity with the Anticancer Prodrug Telcyta and Improved Thermostability

Cancers (Basel). 2024 Feb 12;16(4):762. doi: 10.3390/cancers16040762.

Abstract

Protein engineering can be used to tailor enzymes for medical purposes, including antibody-directed enzyme prodrug therapy (ADEPT), which can act as a tumor-targeted alternative to conventional chemotherapy for cancer. In ADEPT, the antibody serves as a vector, delivering a drug-activating enzyme selectively to the tumor site. Glutathione transferases (GSTs) are a family of naturally occurring detoxication enzymes, and the finding that some of them are overexpressed in tumors has been exploited to develop GST-activated prodrugs. The prodrug Telcyta is activated by GST P1-1, which is the GST most commonly elevated in cancer cells, implying that tumors overexpressing GST P1-1 should be particularly vulnerable to Telcyta. Promising antitumor activity has been noted in clinical trials, but the wildtype enzyme has modest activity with Telcyta, and further functional improvement would enhance its usefulness for ADEPT. We utilized protein engineering to construct human GST P1-1 gene variants in the search for enzymes with enhanced activity with Telcyta. The variant Y109H displayed a 2.9-fold higher enzyme activity compared to the wild-type GST P1-1. However, increased catalytic potency was accompanied by decreased thermal stability of the Y109H enzyme, losing 99% of its activity in 8 min at 50 °C. Thermal stability was restored by four additional mutations simultaneously introduced without loss of the enhanced activity with Telcyta. The mutation Q85R was identified as an important contributor to the regained thermostability. These results represent a first step towards a functional ADEPT application for Telcyta.

Keywords: ADEPT; Telcyta; canfosfamide; glutathione transferase P1-1; machine learning; molecular redesign; prodrugs; protein engineering; thermostability.