A comparative analysis of three distinct fractional derivatives for a second grade fluid with heat generation and chemical reaction

Sci Rep. 2024 Feb 23;14(1):4482. doi: 10.1038/s41598-024-55059-9.

Abstract

This article provides a comparison among the generalized Second Grade fluid flow described by three recently proposed fractional derivatives i.e. Atangana Baleanu fractional derivative in Caputo sense (ABC), Caputo Fabrizio (CF) and Constant Proportional-Caputo hybrid (CPC) fractional derivative. The heat mass transfer is observed during the flow past a vertical porous plate that is accelerated exponentially under the effects of the Magneto hydro dynamics. The effects of the heat generation and exponential heating in the temperature boundary layer and chemical reaction at the concentration boundary layer are also analyzed in this article. The flow model is described by three partial differential equations and the set of non-dimensional PDE's is transformed into ODE's by utilization of the integral transform technique (Laplace transform). For the better understanding of the rheological properties of the Second Grade fluid we used the CF, ABC and CPC operators to describe the memory effects. The analytical exact solution of the problem is obtained in the form of G-functions and Mittag Leffler functions. For the physical significance of flow parameters, different parameters are graphed. From this analysis it is concluded that the CPC is the most suitable operator to describe the memory effects.

Keywords: ABC; CF; CPC; Fractional operators; G-functions; Mittag Leffler; Non-Newtonian fluid; Second grade fluid.