Realization of Gapped and Ungapped Photonic Topological Anderson Insulators

Phys Rev Lett. 2024 Feb 9;132(6):066602. doi: 10.1103/PhysRevLett.132.066602.

Abstract

It is commonly believed that topologically nontrivial one-dimensional systems support edge states rather than bulk states at zero energy. In this work, we find an unanticipated case of topological Anderson insulator (TAI) phase where two bulk modes are degenerate at zero energy, in addition to degenerate edge modes. We term this "ungapped TAI" to distinguish it from the previously known gapped TAIs. Our experimental realization of both gapped and ungapped TAIs relies on coupled photonic resonators, in which the disorder in coupling is judiciously engineered by adjusting the spacing between the resonators. By measuring the local density of states both in the bulk and at the edges, we demonstrate the existence of these two types of TAIs, together forming a TAI plateau in the phase diagram. Our experimental findings are well supported by theoretical analysis. In the ungapped TAI phase, we observe stable coexistence of topological edge states and localized bulk states at zero energy, highlighting the distinction between TAIs and traditional topological insulators.