Transition from Flat-Band Localization to Anderson Localization in a One-Dimensional Tasaki Lattice

Phys Rev Lett. 2024 Feb 9;132(6):063401. doi: 10.1103/PhysRevLett.132.063401.

Abstract

We report an extensive experimental investigation on the transition from flat-band localization (FBL) to Anderson localization (AL) in a one-dimensional synthetic lattice in the momentum dimension. By driving multiple Bragg processes between designated momentum states, an effective one-dimensional Tasaki lattice is implemented with highly tunable parameters, including nearest-neighbor and next-nearest-neighbor coupling coefficients and onsite energy potentials. With that, a flat-band localization phase is realized and demonstrated via the evolution dynamics of the particle population over different momentum states. The localization effect is undermined when a moderate disorder is introduced to the onsite potential and restored under a strong disorder. We find clear signatures of the FBL-AL transition in the density profile evolution, the inverse participation ratio, and the von Neumann entropy, where good agreement is obtained with theoretical predictions.