Ginkgo biloba extract alleviates CCl4-induced acute liver injury by regulating PI3K/AKT signaling pathway

Heliyon. 2024 Feb 13;10(4):e26093. doi: 10.1016/j.heliyon.2024.e26093. eCollection 2024 Feb 29.

Abstract

Acute liver injury (ALI) is a global health problem associated with high mortality and has attracted clinical attention. Ginkgo biloba extract (GBE) is an extract from dried Ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. We investigated the hepatoprotective effect of GBE on carbon tetrachloride (CCl4)-induced acute liver injury in vitro. The components of Ginkgo biloba extract are analyzed by LC-MS, and the key targets of "liver injury-Ginkgo biloba" are identified based on bioinformatics analysis. The signaling pathways such as PI3K/AKT are mainly enriched with high correlation in KEGG. The results of in vitro experiments showed that compared with the Model group, except that the ALT activity level and MDA content in EGB-L group were not significantly decreased (P > 0.05), the activity of ALT, AST and MDA content in other EGB groups were significantly decreased (P < 0.05), and the activities of SOD and CAT were significantly increased (P < 0.05). The expression of inflammatory factors IL-1β, IL-6 and TNF-α were also detected. The results showed that compared with the Model group, the contents of IL-6 in EGB-L group were not significantly decreased (P > 0.05), while the contents of IL-1β, IL-6 and TNF-α in other EGB groups were significantly decreased (P < 0.05), indicating that EGB could reduce the level of cell inflammation. Western blot assay detected the protein expression levels of GF, RTK, PI3K, AKT and p-AKT in cells. The results showed that compared with the Model group, the protein expression levels of GF, RTK, PI3K, AKT and P-AKT were significantly increased after EGB treatment (P < 0.05), and the protein expression level of the EGB-H group was higher than the EGB-L group. Ginkgo biloba extract can inhibit the expression of downstream related genes by activating PI3K/AKT signaling pathway, and at the same time alleviate the inflammatory response of cells, reduce the level of inflammation, and protect the cell damage caused by CCl4.

Keywords: Ginkgo biloba extract; HepG2 cells; Liver injury; PI3K/AKT signaling pathway.