Multifunctional dual-interface layer enables efficient and stable inverted perovskite solar cells

Phys Chem Chem Phys. 2024 Mar 6;26(10):8299-8307. doi: 10.1039/d3cp05794a.

Abstract

Considering that the hydrophobicity of PTAA as the surface of an inverted perovskite solar cell (PSC) substrate directly influences the crystallization and top surface properties of perovskite films, dual-interface engineering is a significant strategy to obtain excellent PSCs. PFN-Br was inserted into the PTAA/perovskite interface to ensure close interfacial contact and achieve exceptional crystallization, and then the perovskite top surface was covered with 3-PyAI to further improve its interface property. The mechanism of interaction of PFN-Br and 3-PyAI with perovskites was analyzed through various characterization methods. The results showed that the introduction of a hydrophilic interface layer reduces voids and defects at the bottom of the film. Additionally, the existence of 3-PyAI reduces surface defects, optimizes energy level alignment, and decreases non-radiative recombination, which is beneficial for charge transfer. Consequently, the open circuit voltage (VOC) and fill factor (FF) of the optimized device were greatly enhanced, and the champion device showed a power conversion efficiency (PCE) of 22.07%. The unencapsulated device with PFN-Br&3-PyAI can retain 80% of its initial performance after aging in the air atmosphere (25 °C at a relative humidity (RH) of 25%) for 27 days. Moreover, the reverse bias stability of the device was improved, with the reverse breakdown voltage (VRB) reaching -2 V. This work recommends a dual-interface strategy for efficient and reliable PTAA-based PSCs.