The pathogenesis of endometriosis and adenomyosis: insights from single-cell RNA sequencing

Biol Reprod. 2024 Feb 22:ioae032. doi: 10.1093/biolre/ioae032. Online ahead of print.

Abstract

Endometriosis and adenomyosis are two similar gynecological diseases that are characterized by ectopic implantation and the growth of the endometrial tissue. Previous studies have reported that they share a common pathophysiology in some respects, such as a similar cellular composition and resistance to the progestogen of lesions, but their underlying mechanisms remain elusive. Emerging single-cell RNA sequencing (scRNA-seq) technologies allow for the dissection of single-cell transcriptome mapping to reveal the etiology of diseases at the level of the individual cell. In this review, we summarized the published findings in research on scRNA-seq regarding the cellular components and molecular profiles of diverse lesions. They show that epithelial cell clusters may be the vital progenitors of endometriosis and adenomyosis. Subclusters of stromal cells, such as endometrial mesenchymal stem cells and fibroblasts, are also involved in the occurrence of endometriosis and adenomyosis, respectively. Moreover, CD8+ T cells, natural killer cells, and macrophages exhibit a deficiency in clearing the ectopic endometrial cells in the immune microenvironment of endometriosis. It seems that the immune responses are activated in adenomyosis. Understanding the immune characteristics of adenomyosis still needs further exploration. Finally, we discuss the application of findings from scRNA-seq for clinical diagnosis and treatment. This review provides fresh insights into the pathogenesis of endometriosis and adenomyosis as well as the therapeutic targets at the cellular level.

Keywords: adenomyosis; endometriosis; pathogenesis; progenitors; single-cell RNA sequencing.