Artificial-Intelligence-Enhanced On-the-Fly Simulation of Nonlinear Time-Resolved Spectra

J Phys Chem Lett. 2024 Mar 7;15(9):2325-2331. doi: 10.1021/acs.jpclett.4c00107. Epub 2024 Feb 22.

Abstract

Time-resolved spectroscopy is an important tool for unraveling the minute details of structural changes in molecules of biological and technological significance. The nonlinear femtosecond signals detected for such systems must be interpreted, but it is a challenging task for which theoretical simulations are often indispensable. Accurate simulations of transient absorption or two-dimensional electronic spectra are, however, computationally very expensive, prohibiting the wider adoption of existing first-principles methods. Here, we report an artificial-intelligence-enhanced protocol to drastically reduce the computational cost of simulating nonlinear time-resolved electronic spectra, which makes such simulations affordable for polyatomic molecules of increasing size. The protocol is based on the doorway-window approach for the on-the-fly surface-hopping simulations. We show its applicability for the prototypical molecule of pyrazine for which it produces spectra with high precision with respect to ab initio reference while cutting the computational cost by at least 95% compared to pure first-principles simulations.