Fluorescent styrenes for mitochondrial imaging and viscosity sensing

Photochem Photobiol. 2024 Feb 22. doi: 10.1111/php.13910. Online ahead of print.

Abstract

Fluorophores bearing cationic pendants, such as the pyridinium group, tend to preferentially accumulate in mitochondria, whereas those with pentafluorophenyl groups display a distinct affinity for the endoplasmic reticulum. In this study, we designed fluorophores incorporating pyridinium and pentafluorophenyl pendants and examined their impact on sub-cellular localization. Remarkably, the fluorophores exhibited a notable propensity for the mitochondrial membrane. Furthermore, these fluorophores revealed dual functionality by facilitating the detection of viscosity changes within the sub-cellular environment and serving as heavy-atom-free photosensitizers. With easy chemical tunability, wash-free imaging, and a favorable signal-to-noise ratio, these fluorophores are valuable tools for imaging mitochondria and investigating their cellular processes.

Keywords: Cyanostilbenes; nystatin; pentafluorophenyl; sub-cellular imaging.