TFCNet: A texture-aware and fine-grained feature compensated polyp detection network

Comput Biol Med. 2024 Mar:171:108144. doi: 10.1016/j.compbiomed.2024.108144. Epub 2024 Feb 14.

Abstract

Purpose: Abnormal tissue detection is a prerequisite for medical image analysis and computer-aided diagnosis and treatment. The use of neural networks (CNN) to achieve accurate detection of intestinal polyps is beneficial to the early diagnosis and treatment of colorectal cancer. Currently, image detection models using multi-scale feature processing perform well in polyp detection. However, these methods do not fully consider the misalignment of information in the process of feature scale change, resulting in the loss of fine-grained features, and eventually cause the missed and false detection of targets.

Method: To solve this problem, a texture-aware and fine-grained feature compensated polyp detection network (TFCNet) is proposed in this paper. Firstly, design Texture Awareness Module (TAM) to excavate the rich texture information from the low-level layers and utilize high-level semantic information for background suppression, thereby capturing purer fine-grained features. Secondly, the Texture Feature Enhancement Module (TFEM) is designed to enhance the low-level texture information in TAM, and the enhanced texture features were fused with the high-level features. By making full use of the low-level texture features and multi-scale context information, the semantic consistency and integrity of the features were ensured. Finally, the Residual Pyramid Splittable Attention Module (RPSA) is designed to balance the loss of channel information caused by skip connections, and further improve the detection performance of the network.

Results: Experimental results on 4 datasets demonstrate that the TFCNet network outperforms existing methods. Particularly, on the large dataset PolypSets, the mAP@0.5-0.95 has been improved to 88.9%. On the small datasets CVC-ClinicDB and Kvasir, the mAP@0.5-0.95 is increased by 2% and 1.6%, respectively, compared to the baseline, showcasing a significant superiority over competing methods.

Keywords: Colorectal cancer; Convolutional neural networks; Fine-grained feature compensation; Polyp detection; Texture awareness.

MeSH terms

  • Diagnosis, Computer-Assisted*
  • Image Processing, Computer-Assisted
  • Neural Networks, Computer*
  • Semantics