Single-molecular diffusivity and long jumps of large organic molecules: CoPc on Ag(100)

Front Chem. 2024 Feb 6:12:1355350. doi: 10.3389/fchem.2024.1355350. eCollection 2024.

Abstract

Energy dissipation and the transfer rate of adsorbed molecules do not only determine the rates of chemical reactions but are also a key factor that often dictates the growth of organic thin films. Here, we present a study of the surface dynamical motion of cobalt phthalocyanine (CoPc) on Ag(100) in reciprocal space based on the helium spin-echo technique in comparison with previous scanning tunnelling microscopy studies. It is found that the activation energy for lateral diffusion changes from 150 meV at 45-50 K to ≈100 meV at 250-350 K, and that the process goes from exclusively single jumps at low temperatures to predominantly long jumps at high temperatures. We thus illustrate that while the general diffusion mechanism remains similar, upon comparing the diffusion process over widely divergent time scales, indeed different jump distributions and a decrease of the effective diffusion barrier are found. Hence a precise molecular-level understanding of dynamical processes and thin film formation requires following the dynamics over the entire temperature scale relevant to the process. Furthermore, we determine the diffusion coefficient and the atomic-scale friction of CoPc and establish that the molecular motion on Ag(100) corresponds to a low friction scenario as a consequence of the additional molecular degrees of freedom.

Keywords: atom-surface sattering; energy dissipation; friction; organic thin films; single-molecule studies; surface diffusion.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [P34704 https://www.doi.org/10.55776/P34704, J3479-N20 https://www.doi.org/10.55776/J3479]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. Supported by TU Graz Open Access Publishing Fund.