MiR-23a-5p alleviates chronic obstructive pulmonary disease through targeted regulation of RAGE-ROS pathway

Respir Res. 2024 Feb 20;25(1):93. doi: 10.1186/s12931-024-02736-y.

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies.

Methods: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE).

Results: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation.

Conclusions: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.

Keywords: COPD; Cigarette smoke; RAGE; ROS; miR-23a-5p.

MeSH terms

  • Animals
  • Humans
  • Lung / metabolism
  • Mice
  • MicroRNAs* / metabolism
  • Pulmonary Disease, Chronic Obstructive* / metabolism
  • Reactive Oxygen Species / metabolism
  • Receptor for Advanced Glycation End Products / genetics
  • Receptor for Advanced Glycation End Products / metabolism

Substances

  • MicroRNAs
  • Reactive Oxygen Species
  • Receptor for Advanced Glycation End Products
  • MIRN23a microRNA, human
  • Mirn23b microRNA, mouse