Construction of two-dimensional zinc indium sulfide/bismuth titanate nanoplate with S-scheme heterojunction for enhanced photocatalytic hydrogen evolution

J Colloid Interface Sci. 2024 May 15:662:727-737. doi: 10.1016/j.jcis.2024.02.124. Epub 2024 Feb 18.

Abstract

Improving the separation efficiency of photogenerated carriers plays an important role in photocatalysis. In this study, two-dimensional (2D)/2D zinc indium sulfide (ZnIn2S4)/bismuth titanate (Bi4Ti3O12) nanoplate heterojunctions were synthesized to alter the Bi4Ti3O12 morphology, modulate the bandgap of Bi4Ti3O12, and enhance the utilization of light. Meanwhile, the construction of the S-scheme heterojunction establishes an internal electric field at the ZnIn2S4/Bi4Ti3O12 heterojunctions interface and achieves the spatial separation of photogenerated charges. The hydrogen production rate of ZnIn2S4/Bi4Ti3O12 nanoplate with the optimal ratio reaches 27.50 mmol h-1 g-1, which is 1.5 times higher than that of ZnIn2S4/Bi4Ti3O12 nanoflower (18.28 mmol h-1 g-1) and 2.4 times higher than that of ZnIn2S4 (11.69 mmol h-1 g-1). The apparent quantum efficiency of ZnIn2S4/Bi4Ti3O12 nanoplate reached 57.9 % under a single wavelength of light at 370 nm. This work provides insights into the study of new materials for photocatalytic hydrogen production.

Keywords: Electron transfer; Heterojunction; Hydrogen production; Morphology control; S-scheme.