Switchable Anisotropic/Isotropic Photon Transport in a Double-Dipole Metal-Organic Framework via Radical-Controlled Energy Transfer

Adv Mater. 2024 May;36(21):e2314005. doi: 10.1002/adma.202314005. Epub 2024 Mar 4.

Abstract

Directional control of photon transport at micro/nanoscale holds great potential in developing multifunctional optoelectronic devices. Here, the switchable anisotropic/isotropic photon transport is reported in a double-dipole metal-organic framework (MOF) based on radical-controlled energy transfer. Double-dipole MOF microcrystals with transition dipole moments perpendicular to each other have been achieved by the pillared-layer coordination strategy. The energy transfer between the double dipolar chromophores can be modulated by the photogenerated radicals, which permits the in situ switchable output on both polarization (isotropy/anisotropy state) and wavelength information (blue/red-color emission). On this basis, the original MOF microcrystal with isotropic polarization state displays the isotropic photon transport and similar reabsorption losses at various directions, while the radical-affected MOF microcrystal with anisotropic polarization state shows the anisotropic photon transport with distinct reabsorption losses at different directions, finally leading to the in situ switchable anisotropic/isotropic photon transport. These results offer a novel strategy for the development of MOF-based photonic devices with tunable anisotropic performance.

Keywords: MOF; energy transfer; mixed‐ligand framework; photon transmission; stimuli‐response.