Functional analysis reveals calcium-sensing receptor gene regulating cell-cell junction in renal tubular epithelial cells

Int Urol Nephrol. 2024 Feb 19. doi: 10.1007/s11255-024-03948-3. Online ahead of print.

Abstract

Purpose: Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis.

Methods: HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells.

Results: PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development.

Conclusions: In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.

Keywords: Calcium-sensing receptor; Human renal tubular epithelial cells; Lentiviral transfection; Nephrolithiasis; RNA-Seq.