Oral administration of collagen peptide in SKH-1 mice suppress UVB-induced wrinkle and dehydration through MAPK and MAPKK signaling pathways, in vitro and in vivo evidence

Food Sci Biotechnol. 2023 Jul 3;33(4):955-967. doi: 10.1007/s10068-023-01362-6. eCollection 2024 Mar.

Abstract

Skin aging is induced by exposure to extrinsic factors, causing various diseases and adversely affecting aesthetics. Studies have suggested that as the quality of life improves, demand for beauty and nutritional cosmetics increases. Here, the protective effects of collagen peptide against UV-induced skin damage were evaluated in vitro and in vivo. Collagen peptide inhibited water loss and UVB irradiation-induced HA degradation in the skin of SKH-1 mice. Additionally, collagen peptide dose-dependently inhibited UVB-induced wrinkle formation, epidermal thickness, and elastase activity. These results suggest that collagen peptide regulates collagen degradation through the MAPK and MAPKK pathway. In addition, collagen peptide administration did not affect changes in weight of the liver, spleen, and kidney, or enzymatic indicators of liver damage. Taken together, oral administration of collagen peptide improved the effects of UV-induced skin aging without toxicity. Therefore, this study supports the development of collagen peptide for skin aging prevention in nutricosmetic products.

Supplementary information: The online version contains supplementary material available at 10.1007/s10068-023-01362-6.

Keywords: Collagen; Human Skin; MAPKK; MMPs; UV.