Single-cell multi-omics reveals insights into differentiation of rare cell types in mucinous colorectal cancer

bioRxiv [Preprint]. 2024 Feb 5:2024.02.01.578409. doi: 10.1101/2024.02.01.578409.

Abstract

Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EECs), the neuroendocrine cell of the normal colon epithelium, as compared to non-mucinous CRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. Here, single cell multi-omics was used to uncover epigenetic alterations that accompany EEC differentiation, identify STAT3 as a novel regulator of EEC specification, and discover a rare cancer-specific cell type with enteric neuron-like characteristics. Further experiments demonstrated that lysine-specific demethylase 1 (LSD1) and CoREST2 mediate STAT3 demethylation and regulate STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. In culmination, these results provide rationale for new LSD1 inhibitors that target the interaction between LSD1 with STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC.

Publication types

  • Preprint