Neutron radiography of an anisotropic drainage flow

Phys Rev E. 2024 Jan;109(1-1):014609. doi: 10.1103/PhysRevE.109.014609.

Abstract

Liquid drainage through foam is dominated by gravity, capillary, and viscous forces. The liquid is conducted by an isotropic network of Plateau borders; however, imposed stress changes the alignment of the foam's structural elements. Previous numerical simulations predicted that a vertical drainage flow will be deflected horizontally if the foam is sheared. We investigated this phenomenon by measuring the distribution of the liquid fraction within a foam formed in a flat rectangular cell. The foam was subjected to shear stress under a forced liquid supply from the top of the cell. Neutron radiographies of unchanged and sheared foam were analyzed to extract measurements of the liquid fraction. Deflections in the distribution of the drainage liquid were detected and found to be positively correlated with increasing foam shear.