A high-resolution time-frequency analysis technique based on bi-directional squeezing and its application in fault diagnosis of rotating machinery

ISA Trans. 2024 Apr:147:382-402. doi: 10.1016/j.isatra.2024.01.025. Epub 2024 Feb 8.

Abstract

Most of the signals in the field of industrial engineering are nonstationary signals, and the accurate description of the time-frequency (TF) characteristics of nonstationary signals is important for the advancement of industrial engineering. Instantaneous frequency (IF) and group delay (GD) are common TF features used to describe nonstationary signals. Time-reassigned synchrosqueezing transform and synchrosqueezing transform are two TF analysis tools that can accurately characterize the GD and IF of nonstationary signals by squeezing the TF coefficients in the time direction and frequency direction, respectively. However, it is difficult for such two techniques to accurately characterize IF and GD simultaneously. A novel method called time-frequency squeezing transform is introduced in this paper to conquer this drawback. The technique first uses the short-time Fourier transform to calculate the time-frequency representation (TFR) of a signal, and then divides the TFR into two parts according to a chirp rate estimator. The subdivided TFR parts are then squeezed in the frequency and time directions to accurately characterize the IF and GD, respectively, and the two squeezed results are added to form a high-resolution result. The effectiveness of the proposed technique is demonstrated with numerical and experimental signals.

Keywords: Bearing fault diagnosis; Chirp rate; Time-frequency analysis; Time-frequency squeezing transform.