Gut microbiota reflect adaptation of cave-dwelling tadpoles to resource scarcity

ISME J. 2024 Jan 8;18(1):wrad009. doi: 10.1093/ismejo/wrad009.

Abstract

Gut microbiota are significant to the host's nutrition and provide a flexible way for the host to adapt to extreme environments. However, whether gut microbiota help the host to colonize caves, a resource-limited environment, remains unknown. The nonobligate cave frog Oreolalax rhodostigmatus completes its metamorphosis within caves for 3-5 years before foraging outside. Their tadpoles are occasionally removed from the caves by floods and utilize outside resources, providing a contrast to the cave-dwelling population. For both cave and outside tadpoles, the development-related reduction in their growth rate and gut length during prometamorphosis coincided with a shift in their gut microbiota, which was characterized by decreased Lactobacillus and Cellulosilyticum and Proteocatella in the cave and outside individuals, respectively. The proportion of these three genera was significantly higher in the gut microbiota of cave-dwelling individuals compared with those outside. The cave-dwellers' gut microbiota harbored more abundant fibrolytic, glycolytic, and fermentative enzymes and yielded more short-chain fatty acids, potentially benefitting the host's nutrition. Experimentally depriving the animals of food resulted in gut atrophy for the individuals collected outside the cave, but not for those from inside the cave. Imitating food scarcity reproduced some major microbial features (e.g. abundant Proteocatella and fermentative genes) of the field-collected cave individuals, indicating an association between the cave-associated gut microbiota and resource scarcity. Overall, the gut microbiota may reflect the adaptation of O. rhodostigmatus tadpoles to resource-limited environments. This extends our understanding of the role of gut microbiota in the adaptation of animals to extreme environments.

Keywords: cave adaptation; glycosidase; metagenome; metamorphosis; plasticity.

MeSH terms

  • Animals
  • Caves
  • Gastrointestinal Microbiome*
  • Humans
  • Larva