Similar construction of spicules and shell plates: Implications for the origin of chiton biomineralization

J Proteomics. 2024 Mar 30:296:105126. doi: 10.1016/j.jprot.2024.105126. Epub 2024 Feb 15.

Abstract

The hard shells of mollusks are products of biomineralization, a distinctive feature of the Cambrian explosion. Despite our understanding of shell structure and mechanical properties, their origin remains mysterious. In addition to their shell plates, most chitons have calcium deposits on their girdles. However, the similarity of these two mineralized structures still needs to be determined, limiting our comprehension of their origins. In our study, we analyzed the matrix proteins in the spicules of chiton (Acanthopleura loochooana) and compared them with the matrix proteins in the shells of the same species. Proteomics identified 96 unique matrix proteins in spicules. Comparison of biomineralization-related matrix proteins in shell plates and spicules revealed shared proteins, including carbonic anhydrases, tyrosinase-hemocyanin, von Willebrand factor type A, cadherin, and glycine-rich unknown proteins. Based on similarities in key matrix proteins, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage, suggesting the existence of a common core or toolkit of matrix proteins among calcifying organisms. SIGNIFICANCE: In this study, we try to understand the types and diversity of matrix proteins in the biomineralization of chiton shell plates and spicules. Through a comparative analysis, we seek insights into the core biomineralization toolkit of ancestral mollusks. To achieve this, we conducted LC-MS/MS and RT-qPCR analyses to identify the types and relative expression levels of matrix proteins in both shell plates and spicules. The analysis revealed 96 matrix proteins in the spicules. A comparison of biomineralization-related matrix proteins in shell plates and spicules from the same species revealed shared proteins including many unknown proteins unique to chitons. Blast searching reveals a universal conservation of these proteins among other chitons. Hence, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage. Our work provides a molecular basis for studying biomineralization in polyplacophoran mollusks and understanding biomineralization evolution. In addition, it identifies potential matrix proteins that could be applied to control crystal growth.

Keywords: Biomineralization; Chiton; Matrix protein; Proteomics; Spicules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomineralization*
  • Chromatography, Liquid
  • Polyplacophora*
  • Proteins / analysis
  • Tandem Mass Spectrometry

Substances

  • Proteins