Reshaped DNA methylation cooperating with homoeolog-divergent expression promotes improved root traits in synthesized tetraploid wheat

New Phytol. 2024 Apr;242(2):507-523. doi: 10.1111/nph.19593. Epub 2024 Feb 16.

Abstract

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.

Keywords: DNA methylation; homoeolog expression; nitrogen use efficiency; root hair length; synthesized alloploid wheat; tetraploidization.

MeSH terms

  • DNA Methylation* / genetics
  • Epigenesis, Genetic
  • Gene Expression Regulation, Plant
  • Tetraploidy*
  • Transcriptome
  • Triticum / genetics