Classification, biosynthesis, and biological functions of triterpene esters in plants

Plant Commun. 2024 Apr 8;5(4):100845. doi: 10.1016/j.xplc.2024.100845. Epub 2024 Feb 13.

Abstract

Triterpene esters comprise a class of secondary metabolites that are synthesized by decorating triterpene skeletons with a series of oxidation, glycosylation, and acylation modifications. Many triterpene esters with important bioactivities have been isolated and identified, including those with applications in the pesticide, pharmaceutical, and cosmetic industries. They also play essential roles in plant defense against pests, diseases, physical damage (as part of the cuticle), and regulation of root microorganisms. However, there has been no recent summary of the biosynthetic pathways and biological functions of plant triterpene esters. Here, we classify triterpene esters into five categories based on their skeletons and find that C-3 oxidation may have a significant effect on triterpenoid acylation. Fatty acid and aromatic moieties are common ligands present in triterpene esters. We further analyze triterpene ester synthesis-related acyltransferases (TEsACTs) in the triterpene biosynthetic pathway. Using an evolutionary classification of BAHD acyltransferases (BAHD-ATs) and serine carboxypeptidase-like acyltransferases (SCPL-ATs) in Arabidopsis thaliana and Oryza sativa, we classify 18 TEsACTs with identified functions from 11 species. All the triterpene-skeleton-related TEsACTs belong to BAHD-AT clades IIIa and I, and the only identified TEsACT from the SCPL-AT family belongs to the CP-I subfamily. This comprehensive review of the biosynthetic pathways and bioactivities of triterpene esters provides a foundation for further study of their bioactivities and applications in industry, agricultural production, and human health.

Keywords: acyltransferases; biological functions; biosynthesis; classification; triterpene esters.

Publication types

  • Review

MeSH terms

  • Acyltransferases / genetics
  • Acyltransferases / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Biological Evolution
  • Esters* / metabolism
  • Humans
  • Plants / metabolism

Substances

  • Esters
  • Acyltransferases