Modified Theoretical Model Predicts Radial Support Capacity of Polymer Braided Stents

Comput Methods Programs Biomed. 2024 Apr:246:108063. doi: 10.1016/j.cmpb.2024.108063. Epub 2024 Feb 10.

Abstract

Background and objective: Self-expanding polymer braided stents are expected to replace metallic stents in the treatment of Peripheral Arterial Disease, which seriously endangers human health. To restore the patency of blocked peripheral arteries with different properties and functions, the radial supporting capacity of the stent should be considered corresponding to the vessel. A theoretical model can be established as an effective method to study the radial supporting capacity of the stent which can shorten the stent design cycle and realize the customization of the stent according to lesion site. However, the classical model developed by Jedwab and Clerc of radial force is only limited to metallic braided stents, and the predictions for polymer braided stents are deviated.

Methods: In this paper, based on the limitation of the J&C model for polymer braided stents, a modified radial force model for polymer braided stents was proposed, which considered the friction between monofilaments and the torsion of the monofilaments. And the modified model was verified by radial force tests of polymer braided stents with different structures and monofilaments.

Results: Compared with the J&C model, the proposed modified model has better predictability for the radial force of polymer braided stents that prepared with different braided structure and polymer monofilaments. The root mean squared error of modified model is 0.041±0.026, while that of the J&C model is 0.246±0.111.

Conclusions: For polymer braided stents, the friction between the polymer monofilaments and the torsion of the monofilaments during the radial compression cannot be ignored. The radial force prediction accuracy of the modified model considering these factors was significantly improved. This work provides a research basis on the theoretical model of polymer braided stents, and improves the feasibility of rapid personalized customization of polymer braided stents.

Keywords: Friction; Modified theoretical model; Polymer braided stent; Radial supporting capacity; Torsion.

MeSH terms

  • Humans
  • Models, Theoretical*
  • Polymers*
  • Stents

Substances

  • Polymers