Non-Linear Optical Activity of Chiral Bipyrimidine-Based Thin Films

Chem Asian J. 2024 May 2;19(9):e202400112. doi: 10.1002/asia.202400112. Epub 2024 Feb 29.

Abstract

An original series of bipyrimidine-based chromophores featuring alkoxystyryl donor groups bearing short chiral (S)-2-methylbutyl chains in positions 4, 3,4 and 3,5, connected to electron-accepting 2,2-bipyrimidine rings, has been developed. Their linear and non-linear optical properties were studied using a variety of techniques, including one- and two-photon absorption spectroscopy, fluorescence measurements, as well as Hyper-Rayleigh scattering to determine the first hyperpolarizabilities. Their electronic and geometrical properties were rationalized by TD-DFT calculations. The thermal properties of the compounds were also investigated by a combination of polarized light optical microscopy, differential scanning calorimetry measurements and small-angle X-ray scattering experiments. The derivatives were found not to have mesomorphic properties, but to exhibit melting temperatures or cold crystallization behavior that enabled the isolation of well-organized thin films. The nonlinear optical properties of amorphous or crystalline thin films were studied by wide-field second harmonic generation and multiphoton fluorescence imaging, confirming that non-centrosymmetric crystal organization enables strong second and third harmonic generation. This new series confirms that our strategy of functionalizing 3D organic octupoles with short chiral chains to generate non-centrosymmetric organized thin films enables the development of highly second order nonlinear optical active materials without the use of corona-poling or tedious deposition techniques.

Keywords: Bipyrimidine; Chirality; Molecular organisation; Nonlinear Optic; Thin Films.