State-of-the-art model for derivation of analytical performance specifications: how to define the highest level of analytical performance technically achievable

Clin Chem Lab Med. 2024 Feb 5. doi: 10.1515/cclm-2023-1286. Online ahead of print.

Abstract

To be accurate and equivalent among assays, laboratory results should be traceable to higher-order references and their quality should fulfill maximum allowable measurement uncertainty (MU) as defined to fit the intended clinical use. Accordingly, laboratory professionals should estimate and validate MU of performed tests using appropriate analytical performance specifications (APS). Current consensus supports the derivation of APS by using one of the three models established by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Strategic Conference held in Milan in 2014. It is recognized that some models are better suited for certain measurands than for others and the attention should be primarily directed towards their biological and clinical characteristics. Among others, model 3 should reflect the state of the art of the measurements that can be defined as the best analytical performance that is technically achievable. Taking serum C-reactive protein and ferritin as examples, here we describe the theoretical premises and the experimental protocol to be used to derive APS for MU when a measurand is allocated to this model. Although the model lacks a direct relationship with clinical outcomes, useful information about the in vitro diagnostic medical device performance and the average quality of provided results may be obtained.

Keywords: analytical performance specifications; measurement uncertainty; metrological traceability.