Spatial and Temporal Drug Usage Patterns in Wastewater Correlate with Socioeconomic and Demographic Indicators in Southern Nevada

medRxiv [Preprint]. 2024 Feb 4:2024.02.02.24302241. doi: 10.1101/2024.02.02.24302241.

Abstract

Evaluating drug use within populations in the United States poses significant challenges due to various social, ethical, and legal constraints, often impeding the collection of accurate and timely data. Here, we aimed to overcome these barriers by conducting a comprehensive analysis of drug consumption trends and measuring their association with socioeconomic and demographic factors. From May 2022 to April 2023, we analyzed 208 wastewater samples from eight sampling locations across six wastewater treatment plants in Southern Nevada, covering a population of 2.4 million residents with 50 million annual tourists. Using bi-weekly influent wastewater samples, we employed mass spectrometry to detect 39 analytes, including pharmaceuticals and personal care products (PPCPs) and high risk substances (HRS). Our results revealed a significant increase over time in the level of stimulants such as cocaine (pFDR=1.40×10-10) and opioids, particularly norfentanyl (pFDR =1.66×10-12), while PPCPs exhibited seasonal variation such as peak usage of DEET, an active ingredient in insect repellents, during the summer (pFDR =0.05). Wastewater from socioeconomically disadvantaged or rural areas, as determined by Area Deprivation Index (ADI) and Rural-Urban Commuting Area Codes (RUCA) scores, demonstrated distinct overall usage patterns, such as higher usage/concentration of HRS, including cocaine (p=0.05) and norfentanyl (p=1.64×10-5). Our approach offers a near real-time, comprehensive tool to assess drug consumption and personal care product usage at a community level, linking wastewater patterns to socioeconomic and demographic factors. This approach has the potential to significantly enhance public health monitoring strategies in the United States.

Keywords: Area Deprivation Index (ADI); High Risk Substances (HRS); Linear mixed effect; Pharmaceuticals and Personal Care Products (PPCPs); Rural-Urban Commuting Area (RUCA); Unsupervised clustering; Wastewater.

Publication types

  • Preprint