Enantioselective and Regiodivergent Synthesis of Propargyl- and Allenylsilanes through Catalytic Propargylic C-H Deprotonation

Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202318040. doi: 10.1002/anie.202318040. Epub 2024 Mar 8.

Abstract

We report a highly enantioselective intermolecular C-H bond silylation catalyzed by a phosphoramidite-ligated iridium catalyst. Under reagent-controlled protocols, propargylsilanes resulting from C(sp3)-H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less-hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situ-generated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3-enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3-propargyl/allenyl Ir intermediate is generated upon π-complexation-assisted deprotonation and undergoes outer-sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step.

Keywords: C−H functionalization; DFT calculations; allenic; enantioselective silylation; propargylic.