Seasonal remodeling of visceral organs in the invasive desert gecko Tarentola annularis

Integr Zool. 2024 Feb 13. doi: 10.1111/1749-4877.12814. Online ahead of print.

Abstract

In winter, many reptiles have a period of inactivity ("brumation"). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, Tarentola annularis, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December-February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles' physiological adaptations to environmental changes.

Keywords: atrophy; brumation; hibernation; metabolic rate; organ size; reptile; winter.