Probing the Internalization and Efficacy of Antibody-Drug Conjugate via Site-Specific Fc-Glycan Labelling of a Homogeneous Antibody Targeting SSEA-4 Bearing Tumors

Isr J Chem. 2023 Oct;63(10-11):e202300042. doi: 10.1002/ijch.202300042. Epub 2023 Apr 22.

Abstract

Antibody drug conjugates (ADC) are an emerging class of pharmaceuticals consisting of cytotoxic agents covalently attached to an antibody designed to target a specific cancer cell surface molecule followed by internalization and intracellular release of payload to exhibit its anticancer activity. Targeted delivery of cytotoxic payload to a variety of specific cells has been demonstrated to have significant enhancement in clinical efficacy and dramatic reduction in off-target toxicity. Site-specific conjugation of payload to the antibody is highly desirable for development of ADC with well-defined antibody-to-drug ratio, enhanced internalization, reduced toxicity, improved stability, desired pharmacological profile and optimal therapeutic index. Here, we reported a site-specific conjugation strategy for evaluation of antibody internalization and efficacy of ADC designed to target SSEA4 on solid tumors. This strategy stems from the azido-fucose tag of a homogeneous antibody Fc-glycan generated via in vitro glycoengineering approach for site-specific conjugation and optimization of antibody-drug ratio to exhibit optimal efficacy. The ADC consisting of a chimeric anti-SSEA4 antibody chMC813-70, conjugated to the antineo-plastic agent monomethyl auristatin E via both cleavable and non-cleavable linkers showed excellent cytotoxicity profile towards SSEA4-bearing cancer cells. A clear distinction in cytotoxicity was observed among cancer cells with different SSEA4 expression levels.

Keywords: Antibody-drug conjugates; In-vitro glycoengineering; SPAAC ligation; anti-SSEA4 antibody; site-specific conjugation.