Cross-Modal Sensory Boosting to Improve High-Frequency Hearing Loss: Device Development and Validation

JMIRx Med. 2024 Feb 9:5:49969. doi: 10.2196/49969.

Abstract

Background: High-frequency hearing loss is one of the most common problems in the aging population and with those who have a history of exposure to loud noises. This type of hearing loss can be frustrating and disabling, making it difficult to understand speech communication and interact effectively with the world.

Objective: This study aimed to examine the impact of spatially unique haptic vibrations representing high-frequency phonemes on the self-perceived ability to understand conversations in everyday situations.

Methods: To address high-frequency hearing loss, a multi-motor wristband was developed that uses machine learning to listen for specific high-frequency phonemes. The wristband vibrates in spatially unique locations to represent which phoneme was present in real time. A total of 16 participants with high-frequency hearing loss were recruited and asked to wear the wristband for 6 weeks. The degree of disability associated with hearing loss was measured weekly using the Abbreviated Profile of Hearing Aid Benefit (APHAB).

Results: By the end of the 6-week study, the average APHAB benefit score across all participants reached 12.39 points, from a baseline of 40.32 to a final score of 27.93 (SD 13.11; N=16; P=.002, 2-tailed dependent t test). Those without hearing aids showed a 10.78-point larger improvement in average APHAB benefit score at 6 weeks than those with hearing aids (t14=2.14; P=.10, 2-tailed independent t test). The average benefit score across all participants for ease of communication was 15.44 (SD 13.88; N=16; P<.001, 2-tailed dependent t test). The average benefit score across all participants for background noise was 10.88 (SD 17.54; N=16; P=.03, 2-tailed dependent t test). The average benefit score across all participants for reverberation was 10.84 (SD 16.95; N=16; P=.02, 2-tailed dependent t test).

Conclusions: These findings show that vibrotactile sensory substitution delivered by a wristband that produces spatially distinguishable vibrations in correspondence with high-frequency phonemes helps individuals with high-frequency hearing loss improve their perceived understanding of verbal communication. Vibrotactile feedback provides benefits whether or not a person wears hearing aids, albeit in slightly different ways. Finally, individuals with the greatest perceived difficulty understanding speech experienced the greatest amount of perceived benefit from vibrotactile feedback.

Keywords: audiology; develop; development; hear; hearing; hearing aid; hearing aids; hearing loss; high-frequency; loud noise; loud noises; machine learning; noise pollution; phoneme; phonemes; sound; sounds; vibration; vibrations; vibrotactile; wearable; wearables; wristband.