Where do the Fluorine Atoms Go in Inorganic-Oxide Fluorinations? A Fluorooxoborate Illustration under Terahertz Light

Angew Chem Int Ed Engl. 2024 Apr 2;63(14):e202319121. doi: 10.1002/anie.202319121. Epub 2024 Feb 29.

Abstract

The substitution of fluorine atoms for oxygen atoms/hydroxyl groups has emerged as a promising strategy to enhance the physical and chemical properties of oxides/hydroxides in fluorine chemistry. However, distinguishing fluorine from oxygen/hydroxyl in the reaction products poses a significant challenge in existing characterization methods. In this study, we illustrate that terahertz (THz) spectroscopy provides a powerful tool for addressing this challenge. To this end, we investigated two fluorination reactions of boric acid, utilizing MHF2 (M=Na, C(NH2)3) as fluorine reagents. Through an interplay between THz spectroscopy and solid-state density functional theory, we have conclusively demonstrated that fluorine atoms exclusively bind with the sp3-boron but not with the sp2-boron in the reaction products of Na[B(OH)3][B3O3F2(OH)2] (NaBOFH) and [C(NH2)3]2B3O3F4OH (GBF2). Based on this evidence, we have proposed a reaction pathway for the fluorinations under investigation, a process previously hindered due to structural ambiguity. This work represents a step forward in gaining a deeper understanding of the precise structures and reaction mechanisms involved in the fluorination of oxides/hydroxides, illuminated by the insights provided by THz spectroscopy.

Keywords: THz spectroscopy; borate; fluorination mechanism; fluorooxoborates; solid-state chemistry.