Multi-Scale and Spatial Information Extraction for Kidney Tumor Segmentation: A Contextual Deformable Attention and Edge-Enhanced U-Net

J Imaging Inform Med. 2024 Feb;37(1):151-166. doi: 10.1007/s10278-023-00900-2. Epub 2024 Jan 12.

Abstract

Kidney tumor segmentation is a difficult task because of the complex spatial and volumetric information present in medical images. Recent advances in deep convolutional neural networks (DCNNs) have improved tumor segmentation accuracy. However, the practical usability of current CNN-based networks is constrained by their high computational complexity. Additionally, these techniques often struggle to make adaptive modifications based on the structure of the tumors, which can lead to blurred edges in segmentation results. A lightweight architecture called the contextual deformable attention and edge-enhanced U-Net (CDA2E-Net) for high-accuracy pixel-level kidney tumor segmentation is proposed to address these challenges. Rather than using complex deep encoders, the approach includes a lightweight depthwise dilated ShuffleNetV2 (LDS-Net) encoder integrated into the CDA2E-Net framework. The proposed method also contains a multiscale attention feature pyramid pooling (MAF2P) module that improves the ability of multiscale features to adapt to various tumor shapes. Finally, an edge-enhanced loss function is introduced to guide the CDA2E-Net to concentrate on tumor edge information. The CDA2E-Net is evaluated on the KiTS19 and KiTS21 datasets, and the results demonstrate its superiority over existing approaches in terms of Hausdorff distance (HD), intersection over union (IoU), and dice coefficient (DSC) metrics.

Keywords: Edge-enhanced loss function; Kidney tumor segmentation; Medical images; Multiscale feature learning; U-Net.