Phosphination of amino-modified mesoporous silica for the selective separation of strontium

J Hazard Mater. 2024 Apr 5:467:133741. doi: 10.1016/j.jhazmat.2024.133741. Epub 2024 Feb 7.

Abstract

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

Keywords: Adsorption; Column experiment; Coordination; SBA-15; Strontium.