Sustainable space technologies-Strategies toward a predictive aerothermal design of re-useable space transportation systems

Rev Sci Instrum. 2024 Feb 1;95(2):021101. doi: 10.1063/5.0177075.

Abstract

This paper presents a review of current aerothermal design and analysis methodologies for spacecraft. It briefly introduces the most important system architectures, including rockets, gliders, and capsule-based configurations, and gives an overview of the specific aerothermal and thermo-chemical effects that are encountered during their different flight phases and trajectories. Numerical and experimental design tools of different fidelity levels are reviewed and discussed, with a specific focus placed on the present limitations and uncertainty sources of models for the wide range of physical phenomena that are encountered in the analyses. This includes high temperature thermodynamics, chemical effects, turbulence, radiation, and gasdynamic effects. This is followed by a summary of current predictive capabilities and research foci, with missing capabilities identified. Finally, a future strategy toward an efficient and predictive aerothermal design of re-useable space transportation systems is proposed.