Improved Charge Separation and CO2 Affinity of In2O3 by K Doping with Accompanying Oxygen Vacancies for Boosted CO2 Photoreduction

Langmuir. 2024 Feb 10. doi: 10.1021/acs.langmuir.3c03854. Online ahead of print.

Abstract

The CO2 photocatalytic conversion efficiency of the semiconductor photocatalyst is always inhibited by the sluggish charge transfer and undesirable CO2 affinity. In this work, we prepare a series of K-doped In2O3 catalysts with concomitant oxygen vacancies (OV) via a hydrothermal method, followed by a low-temperature sintering treatment. Owing to the synergistic effect of K doping and OV, the charge separation and CO2 affinity of In2O3 are synchronously promoted. Particularly, when P/P0 = 0.010, at room temperature, the CO2 adsorption capacity of the optimal K-doped In2O3 (KIO-3) is 2336 cm3·g-1, reaching about 6000 times higher than that of In2O3 (0.39 cm3·g-1). As a result, in the absence of a cocatalyst or sacrificial agent, KIO-3 exhibits a CO evolution rate of 3.97 μmol·g-1·h-1 in a gas-solid reaction system, which is 7.6 times that of pristine In2O3 (0.52 μmol·g-1·h-1). This study provides a novel approach to the design and development of efficient photocatalysts for CO2 conversion by element doping.