Efficient and Rapid Hydrogen Extraction from Ammonia-Water via Laser Under Ambient Conditions without Catalyst

J Am Chem Soc. 2024 Feb 21;146(7):4864-4871. doi: 10.1021/jacs.3c13459. Epub 2024 Feb 9.

Abstract

As a good carrier of hydrogen, ammonia-water has been employed to extract hydrogen in many ways. Here, we demonstrate a simple, green, ultrafast, and highly efficient method for hydrogen extraction from ammonia-water by laser bubbling in liquids (LBL) at room temperature and ambient pressure without catalyst. A maximum apparent yield of 33.7 mmol/h and a real yield of 93.6 mol/h were realized in a small operating space, which were far higher than the yields of most hydrogen evolution reactions from ammonia-water under ambient conditions. We also established that laser-induced cavitation bubbles generated a transient high temperature, which enabled a very suitable environment for hydrogen extraction from ammonia-water. The laser used here can serve as a demonstration of potentially solar-pumped catalyst-free hydrogen extraction and other chemical synthesis. We anticipate that the LBL technique will open unprecedented opportunities to produce chemicals.