Assessing Phytogenic and Chemogenic Silver Nanoparticles for Antibacterial Activity and Expedited Wound Recuperation

Nanomaterials (Basel). 2024 Jan 23;14(3):237. doi: 10.3390/nano14030237.

Abstract

Green silver nanoparticles (AgNPs) possess tremendous promise for diverse applications due to their versatile characteristics. Coriander and other plant extracts have become popular for greenly synthesizing AgNPs as an economical, biocompatible, cost-effective, and environmentally beneficial alternative to chemical processes. In this study, we synthesized AgNPs from coriander leaves and evaluated their antibacterial, anti-inflammatory, antioxidant, and wound-healing acceleration properties in comparison to chemically synthesized AgNPs. The zeta potentials of AgNPs extracted from green and chemical processes were -32.4 mV and -23.4 mV, respectively. TEM images showed a cuboidal shape of green and chemical AgNPs with a diameter of approximately 100 nm. The FTIR spectra of green AgNPs showed an extreme absorption peak at 3401 cm-1, which signifies O-H stretching vibrations, typically linked to hydroxyl groups. In vitro results elaborated that AgNPs from coriander exerted a stronger effect on anti-Klebsiella pneumoniae (KP) through interrupting cell integrity, generating ROS, depleting ATP, and exhibiting significant antioxidant activity, compared with AgNPs synthesized chemically. In vivo experiments showed that AgNPs from coriander, as opposed to chemically manufactured AgNPs, greatly accelerated the healing of wounds contaminated with Klebsiella pneumoniae bacteria by effectively eliminating the bacteria on the wounds and stimulating skin regeneration and the deposition of dense collagen. In vivo assays further demonstrated that green AgNPs effectively enhanced Klebsiella pneumoniae-infected wound healing by extenuating local inflammatory responses and up-regulating VEGF and CD31 expression. In conclusion, green AgNPs significantly alleviated the inflammation without significantly harming the organism.

Keywords: antibacterial; antioxidant; coriander; green synthesis; silver nanoparticles.