Antimicrobial and anti-biofilm activity of a thiazolidinone derivative against Staphylococcus aureus in vitro and in vivo

Microbiol Spectr. 2024 Mar 5;12(3):e0232723. doi: 10.1128/spectrum.02327-23. Epub 2024 Feb 8.

Abstract

Staphylococcus aureus (S. aureus) causes many infections with significant morbidity and mortality. S. aureus can form biofilms, which can cause biofilm-associated diseases and increase resistance to many conventional antibiotics, resulting in chronic infection. It is critical to develop novel antibiotics against staphylococcal infections, particularly those that can kill cells embedded in biofilms. This study aimed to investigate the bacteriocidal and anti-biofilm activities of thiazolidinone derivative (TD-H2-A) against S. aureus. A total of 40 non-duplicate strains were collected, and the minimum inhibitory concentrations (MICs) of TD-H2-A were determined. The effect of TD-H2-A on established S. aureus mature biofilms was examined using a confocal laser scanning microscope (CLSM). The antibacterial effects of the compound on planktonic bacteria and bacteria in mature biofilms were investigated. Other characteristics, such as cytotoxicity and hemolytic activity, were researched. A mouse skin infection model was used, and a routine hematoxylin and eosin (H&E) staining was used for histological examination. The MIC values of TD-H2-A against the different S. aureus strains were 6.3-25.0 µg/mL. The 5 × MIC TD-H2-A killed almost all planktonic S. aureus USA300. The derivative was found to have strong bacteriocidal activity against cells in mature biofilms meanwhile having low cytotoxicity and hemolytic activity against Vero cells and human erythrocytes. TD-H2-A had a good bacteriocidal effect on S. aureus SA113-infected mice. In conclusion, TD-H2-A demonstrated good bacteriocidal and anti-biofilm activities against S. aureus, paving the way for the development of novel agents to combat biofilm infections and multidrug-resistant staphylococcal infections.IMPORTANCEStaphylococcus aureus, a notorious pathogen, can form a stubborn biofilm and develop drug resistance. It is crucial to develop new anti-infective therapies against biofilm-associated infections. The manuscript describes the new antibiotic to effectively combat multidrug-resistant and biofilm-associated diseases.

Keywords: Staphylococcus aureus; WalK; anti-biofilm activity; bacteriocidal.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Biofilms
  • Chlorocebus aethiops
  • Humans
  • Methicillin-Resistant Staphylococcus aureus*
  • Mice
  • Microbial Sensitivity Tests
  • Staphylococcal Infections* / drug therapy
  • Staphylococcal Infections* / microbiology
  • Staphylococcus aureus
  • Vero Cells

Substances

  • Anti-Bacterial Agents